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I. INTRODUCTION

The ability to accurately predict the roll characteristics of projectiles is important to
the projectile designer. A good kinetic energy (KE) projectile design will have an equilib-
rium or steady-state spin rate that avoids both the yawing frequency and the projectile’s
first natural frequency of vibration. The yawing frequency is avoided to preclude the pos-
sibility of spin/yaw lock-in. Typically, the natural frequency and the yawing frequency
represent an upper and lower bound for the design equilibrium spin rate.

In previous work, a computational approach! had been developed and applied to
predict the aerodynamic roll characteristics of the M735 KE projectile. These aerodynamic
parameters, which include the roll producing moment, the roll damping moment, and the
equilibrium spin rate, were determined by computing the flow field about the projectile
using a Parabolized Navier-Stokes computational approach. Because no wind tunnel or
range tests had been performed to determine the roll characteristic of this projectile,
comparisons of the numerical predictions were only made with engineering estimates of
these aerodynamic parameters. Further benchmarking of the numerical approach with
experimental data was desired.

In this report, the numerical approach has been applied to compute the aerodynamic
roll characteristics of the M829 KE projectile. Comparisons are made with data obtained
from range firings as well as with engineering predictions of these parameters. A schematic
of the M829 projectiie is shown in Figures 1 - 4. The particular fin design shown here has
roll-producing beveled surfaces at the leading and trailing edge of the fins. Particular care
has been taken to model the fin geometry accurately.

In this report, the equation of motion for a projectile undergoing pure rolling motion
is briefly discussed in the next section. The computational techniques used to predict the
roll characteristics are then presented, followed by a brief discussion of the range data and
engineering estimation approach. Presentation and discussion of the results obtained by
applying these techniques are then made and, finally, the conclusions of this study are
presented.

II. THE ROLL EQUATION

Aero-ballisticians describe the spin history of the projectile in terms of the following
ordinary differential equation;?
dp 1 2
2 hut M2DS,./Ci (1)
where p is the spin rate, t is time, I is the axial moment of inertia, C; is the net aerody-
namic roll moment coefficient acting on the projectile, and peo, a0, Moo, D, and S,.; are,
respectively, the reference density, speed of sound, Mach number, diameter, and area.

The net aerodynamic roll moment is composed of two components, the roll producing
moment and the roll damping moment. The roll producing moment, which induces spin




on the projectile, results from the aerodynamic loads produced by either the machined
asymmetries in the fin geometry or by the fin cant, while the roll damping contribution
consists of pressure and viscous forces that oppose the spin. The relationship of these
contributions to the net aerodynamic roll moment is expressed below in non-dimensional

form, D
Cr=Cy+ c,,,%,— (2)

where C), is the roll producing moment coefficient, Ci, is the roll damping moment coef-
ficient and %Q is the non-dimensional spin rate. The roll damping coefficient will differ
in sign with the roll producing moment coefficient and will be negative if the direction of
positive roll moment is in the direction of positive spin.

In the computational framework where the projectile is flying at constant velocity,
Equation 2 shows that the roll producing moment can be obtained by computing the
net aerodynamic roll moment at zero spin rate. Likewise, the roll damping moment is
obtained by computing the net aerodynamic roll moment on the projectile at a fixed spin
rate, subtracting the roll producing moment from it and dividing by the spin rate. The
equilibrium spin rate, which occurs when the net aerodynamic roll moment is zero, is
obtained by dividing the roll producing moment by the roll damping moment.

A closed form solution? of Equation 1 can be obtained by transforming the indepen-
dent variable from time to distance and by assuming that the aerodynamic coefficients
do not vary across the Mach number range of interest. In transforming the independent
variable from time to distance, the solution of the drag equation is implicitly included.
The solution of this equation is shown below.

2- (DD, Blo-?
where
K, _&03%2 [CD + k;2C1p]
Ks = P=2rl “52';’ e,
D " I’mll-)2
), - &

The spin rate at launch, (%D)O, represents an initial condition that must be specified. In
the analysis presented here, the spin rate at launch is presumed to be zero. Note that the

steady-state spin rate, (2‘7'3)”, differs slightly from the equilibrium spin rate defined above

in that the drag term appears in the definition of the steady-state spin rate. For the case
of zero drag (projectile is flying at constant velocity), the steady-state spin rate becomes
identical to the equilibrium spin rate. The difference between the equilibrium spin rate
and the steady-state spin rate is about one half of one percent for the projectile examined
here.




III. COMPUTATIONAL APPROACH

Computation of the viscous flow field about the finned projectile configuration was
accomplished by solving the thin-layer Navier-Stokes equations using a parabolized Navier-
Stokes technique. The computations have been performed in a coordinate frame that ro-
tates at the spin rate of the projectile. The fluid flow relative to the rotating coordinate
frame does not vary with time, allowing the steady (non-time varying) Navier-Stokes equa-
tions to be applied. The solution of the steady Navier-Stokes equations can be performed
at a reasonable computational cost. In order to implement the rolling coordinate frame,
the governing equations have been modified to include the effects of centrifugal and Coriolis
forces. The steady thin-layer Navier-Stokes equations are shown below.

- . 1 (0S5

+—+ +HC+H—R6(6C+SC) (5)
Here, E’, F, and G are the inviscid flux vectors, S is the viscous flux vector, H. and S.
are inviscid and viscous source terms due to the cylindrical coordinate formulation, and
H is the source term containing the Coriolis and centrifugal force terms which result from
the rotating coordinate frame. Each of these matrices are functions of the dependent
variables represented by the vector ¢(p, pu, pv, pw, €), where p and e are the density and
the total energy per unit volume, and u, v, and w, are the velocity components in axial,
circumferential, and normal directions. The flux terms are shown below.

pU pV
) pulU + &.p X puV + nzp
E=1 polU F=231 pvV +nep/r
pwU pwV +n.p
(e+p)U (e+p)V
pW pw
) puW + (Cop ) puw
G=21| poW+ (ep/r H.= 4 2pvw
pwW + (.p p(w? — v?) (6)
(e +p)W (e +p)w
[ 0
Ou
ml_a? + m2c:: 0
0
S = % mlgl-)- + ma(p/T H= -} 2Qpw
éw —2Qpv — Q?rp
mlgc— + ma(, —-Q?rpw
b m3 -
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€z = ,,l_t

e = J(rebc — Ogre) no = J(zere) 1 = J(—x¢b;) (12)
Cz = J(6gry — Teby) Co = J(—z¢ry) ¢ = J(z¢bn)

J =1/ (z¢(6yr¢ — bcrn))

The pressure, p, can be related to the dependent variables by applying the ideal gas
law.

=(y-1) [e - -ng] (13)

The thin-layer equations are solved using the Parabolized Navier-Stokes technique of
Schiff and Steger.3 Following the approach of Schiff and Steger, the governing equations,
which have been modified here to include the Coriolis and centrifugal force terms, are
solved using a conservative, approximately factored, implicit finite-difference numerical
algorithm as formulated by Beam and Warming.4

Following the approach of Schiff and Steger, the equations are first linearized and
placed in delta form, where the equations are solved for the difference in the dependent
variables rather than the variable itself. This set of equations is then factorized using the
approach of Beam and Warming. The following set of equations is obtained.

[/i_{ +(1 - a)AL (&,BJ’ +D’ + D"cj)] A§"=RHS (14)
[.‘ij +(1-a)AL (&Cf -~ E;—e (&M" + M ))] AG = AA¢ (15)
RHS = —(&i— A + o(Bi - EI™) - [(&/TY P E] - (&/IYE]™]

—(1 = @)AE{S, [0 (B/TY + (na/r)H(F/IY + 03+ (G/TY]
+8¢ [CFHUELTY + (Co/rY* (FITY + ¢H(G1T)]
+H + H - R% (&51 + §.f)} (16)

The form of the equations, as well as the notation, is similar to that used by Schiff
and Steger. Here, A, B, C, and M are the Jacobian matrices of the flux vectors E, F,
G, and S. Further details on the definitions of these matrices can be found in Reference
3. The important difference here is the addition of the matrices D and H due to the
rotating coordinate system. Although the Jacobian matrix, D, can be included in either the
circumferential inversion or the normal inversion, including this term in the circumferential
inversion simplifies slightly the implementation of the shock fitting boundary conditions.

Two additional Jacobian matrices, D, and M., appear in these equations and are
due to the linearization of the inviscid and viscous cylindrical coordinate source terms; H.
and S.. The addition of the Jacobian matrices due to the cylindrical coordinate terms
has been performed during the course of this study and represents an improvement in the
formulation. Numerical experiments have shown, however, that the implicit treatment of
these terms has little affect on the computed flow field for the cases examined here.




The computations presented here were performed using a shock fitting procedure
reported by Rai and Chaussee.5 This procedure solves the five Rankine-Hugoniot jump
conditions, two geometric shock-propagation conditions, and one compatibility equation
to determine the values of the five dependent variables immediately behind the shock, as
well as the position of the shock. By including the implicit part of the source term due to
the rotating coordinate frame in the circumferential inversion, the shock fitting procedure
of Rai and Chaussee can be used without modification, as long as the correct free-stream
conditions are specified as shown below in non-dimensional form.

p = 1L
pu = My
pv = 7r§d
pw = 0.
1
e = L/y(v-1)+ §{M§, + r?Q?%} (17)

The computational results presented here were obtained using a grid that consisted of
60 points between the body and the shock. In the circumferential direction, gridding was
performed over a 60 degree sector due to the periodic symmetry present in the configuration
examined here. Over the forebody, six circumferential points were used, though the flow
here is axisymmetric. On the finned portion of the body, 50 points were used in the
circumferential direction. The grid over this part of the body was generated using an
elliptic grid generation scheme presented by Rai and Chaussee.®

The computations were performed using a Cray-2 supercomputer. Solutions over
the axisymmetric and finned portion of the body were obtained in 250 seconds and 1100
seconds respectively.

The turbulent viscosity, u;, which appears in the viscous matrices, was computed
using the Baldwin-Lomax turbulence inodel.”

IV. ENGINEERING ESTIMATION APPROACH

Two simple approaches have been formulated to estimate the roll producing and roll
damping moments, and subsequently, the equilibrium spin rate. These approaches are
typical of the approaches currently adopted by some projectile designers.

1. Estimation of the Roll Damping of a KE Fin

One approach for estimating the roll damping of a KE fin is to use a strip theory
approach; a technique that divides the fin planform into many small chord-wise strips.
Each strip is assumed to be a two-dimensional flat plate at angle of attack, where the local
angle of attack is a function of the local circumferential velocity due to the spin and the
axial component of the velocity. The roll moment is then determined by integrating the lift
on each strip multiplied by the local moment arm. Note that the sign of the roll moment




will be negative since the roll moment opposes the spin. The roll damping moment, which
is the variation in the roll moment with spin, can be determined by dividing the roll
moment by the non-dimensional spin rate, since roll producing moment on the flat plate
fin will be zero. In the current approach, the lift on each strip is determined from linearized
potential theory. The resulting equation for the roll damping moment coefficient is shown

belc #,
€ _ =16Njins /r'"»/D c(r/D) (D) d(_;_) (18)

7r\/M2 — 1 Jrroat/D

where Ny;n, is the number of fins, ¢(r/D) is the local chord length at the nondimensional
radial position r/D, and r,., and ry;, are the radial locations of the fin root and fin tip.

2. Estimation of the Roll Producing Moment on a Beveled Fin

The roll producing moment caused by the machined asymmetries on the leading and
trailing edges of the fin can be estimated using an approach similar to that applied to
estimate the roll damping moment. Strip theory is again applied, and the fin is treated
as a two-dimensional flat plate at angle of attack, where the local angle of attack is equal
to the local cant angle, §(F). The cant angle of the fin is produced by the deflection of
the leading and trailing edges of the fins due to the beveling. The cant angle is shown
schematically in Figure 5. The roll producing moment is determined by integrating the
lift on each strip multiplied by the local moment arm. As before, the lift on each strip is
determined from linearized potential theory. The resulting integral expression for the roll
producing moment coefficient is shown below.

16N [e-»/v c(r/D)é(r/D) (5)e(%) (19)

7r\/M2 — 1 Jrroat/D D

V. RANGE RESULTS

During 1983, eleven M829 rounds were fired through the Ballistic Research Laboratory
Transonic Range.8 The launch Mach number of the rounds varied between 3.50 and 5.27, as
shown in Table 1. Because of restrictions on firing depleted uranium through the Transonic
Range, the rounds were modified by replacing the depleted uranium core with a steel core.
The external shape of the projectile was not changed, thus the aerodynamics of the rounds
fired through the range should be identical to the fielded round. The inflight motion of the
rounds was measured, including the spin rate at two stations along the trajectory. Spin
rates were measured using spin card arrays. A tabulation of the measured spin rates is
shown in Table 1.

Using the closed form solution of the roll equation (Equation 3), a curve fit was
performed through the measured spin history for each of the rounds. Since rounds fired
from a smooth-bore gun typically have nearly zero initial spin rate, the initial spin rate
was assumed to be zero. With the initial spin rate specified, the roll equation contains two
additional parameters, K, and ¢,,, that were fit uniquely using the spin data obtained at




the two measurement stations. The roll producing and roll damping moment coefficients
were then extracted from these parameters using Equation 4. The drag coefficient used in
extracting the roll damping moment coefficient was obtained from the range reduction.8
The steady-state spin rate, roll producing moment coefficient, and roll damping moment
coefficient obtained from the reduction are also shown in Table 1.

VI. RESULTS

Computations have been performed to predict the following aerodynamic parameters
that determine the roll characteristics of the M829 projectile: the roll producing moment,
the roll damping moment, and the equilibrium spin rate. The computations were performed
over a range of Mach numbers (M = 3.0 to 5.5) and non-dimensional spin rates (pD/V =
0.0 to 0.015) for free-flight, sea-level atmospheric conditions.

Particular care has been taken to model the fin geometry accurately, including the
roll-producing beveled surfaces at the leading and trailing edge of the fins. It should also
be noted that the fins on this projectile overhang the base. This aspect of the projectile
was modeled by extending the base so that it was aligned with the trailing edge of the fins.
This allowed the flow field to be computed up to the trailing edge of the fins. However,
when the pressure and viscous stresses were integiated to compute the forces acting on the
body, the contribution from this part of the body was not considered. Because the flow is
supersonic and the fins are not immersed in the recirculating flow in the base region, the
flow field adjacent to this region can be considered to be reasonably well modeled. Though
not shown, the cylindrical portion of the body has a number of circumferential grooves
which cover nearly two-thirds of the body. The effect of these grooves is not modeled in
the current computations, though it is a subject of current research.

The computed roll characteristics were compared with values determined from engi-
neering estimation approaches and with results obtained from range firings. Roll histories
were obtained by solving the roll equation using the computed aerodynamic roll moment
coefficients and were compared with the range measurements. In this section, the compu-
tational results are first presented independently, followed by discussion of comparisons of
the computational results with the engineering approach and range results.

1. Computational Results

The roll producing moment is obtained by computing the net roll moment at zero
spin rate. Figure 6 shows the development of the roll producing moment coefficient as it
is integrated down the body at Mach 4. The roll producing moment initially shows rapid
increase over the front of the fin due to the leading edge bevel. At axial locations near
the aft end of the leading edge bevel (and upstream of the trailing edge bevel), the roll
moment decreases somewhat due to a pressure differential across the fin which opposes the
roll moment component from the leading edge bevel. The roll moment begins to increase
again at axial locations where the trailing edge bevel exists.




Figure 7 shows the pressure distribution on both sides of the fin at a spanwise location
that is half-way between the root and tip chords. This pressure profile is typical of other
spanwise locations. The roll producing pressure differentials from the leading and trailing
edge bevels are evident, as well as the opposing pressure differential between the two bevels.

The computed roll producing moment as a function of Mach number is shown in
Figure 8. The computed results show that the roll producing moment has a maximum
value at Mach 4. The decrease in the roll producing moment below Mach 4 is due to
the increasing role of the pressure differential downstream of the leading edge bevel which
opposes the roll producing contributions from the leading and trailing edge bevels.

The development of the net roll moment acting on the body at non-dimensional spin
rates of zero and 0.0074 is shown in Figure 9. The difference between these two curves
is the roll damping contribution to the net roll moment. This difference is also shown in
this figure. The magnitude of the roll damping contribution shows a rapid increase over
the swept portion of the fin. On the aft portion of the fin, where the fin has reached its
maximum span, the roll damping contribution does not increase as rapidly. This is due in
part to tip effects, which become more pronounced at the lower Mach numbers considered
here.

The variation of the net roll moment with spin rate at Mach 4 is shown in Figure 10.
For the range of spin rates of interest in the current study, the net roll moment exhibits
a linear variation with spin rate. The slope of this curve represents the roll damping
moment coefficient, since the roll damping moment is, by definition, the variation of net
roll moment with spin rate. The variation of the roll dainping moment coefficient with
Mach number is seen in Figure 11. The magnitude of the roll damping moment coefficient
has a maximum at about Mach 3.5. The roll damping decreases somewhat below Mach
3.5, due to tip effects.

Figure 10 also shows that at Mach 4, the net roll moment is zero at a non-dimensional
spin rate 0.0091. This spin rate is the equilibrium spin rate, since the roll producing
moment is balanced by the roll damping moment. The variation of the equilibrium spin
rate with Mach number is shown in Figure 12. Above Mach 4, the equilibrium spin rate
shows little variation with Mach number. At lower Mach numbers, the equilibrium spin
rate shows a slight decrease with decreasing Mach number, because the roll producing
moment coeflicient is decreasing faster than the roll damping moment coefficient.

2. Computational and Engineering Approach Results

A comparison of the predictions of the computational approach and the engineering
estimation approach has been performed. Figures 13-15 show the roll producing moment
coefficient, the roll damping moment coefficient, and the equilibrium spin rate obtained
using the computational and engineering estimation approaches.

The engineering estimates of the roll producing and roll damping moment coefficient
both show an asymptotic behavior with Mach number. When compared to the computa-
tional results, these estimates show a significant over-prediction of greater than 100 percent




for both these coefficients at Mach 3, though the over-prediction in the vicinity of a typical
launch Mach number (Mach 5) is reduced to about 25 percent.

The engineering estimates of the equilibrium spin rate is within 15 percent of the
computed results. The engineering estimate of the equilibrium spin rate is independent of
Mach number, though the computed results show a variation of over 20 percent across the
Mach number regime.

3. Comparison with Range Results

Using the computed roll producing and roll damping moment coefficients, spin his-
tories of the projectile were determined by solving the roll equation (Equation 3). Spin
trajectories were obtained for four launch Mach numbers; 3.5, 4.0, 4.65, and 5.25; cor-
responding closely to the four groups of launch Mach numbers used in the range firings.
These trajectories are shown in Figures 16-19. The computed spin histories fall within the
range of the range data at both of the measurement locations. The computed trajectories
show that at the second measurement station, the projectile is within 3 percent of the
steady-state spin rate.

As was discussed in Section V, the steady-state spin rate and the roll producing and
roll damping moment coefficients were determined from the range measurements. The
comparison between range and computed values of these parameters is made in the next
several figures.

Figure 20 shows the comparison of the steady-state spin rate as a function of Mach
number. The computed results are bracketed by the range data, demonstrating that the
predictions of the steady-state spin rate are within the accuracy of measurements.

Comparisons of the roll producing and roll damping moment coefficients are shown
in Figures 21 and 22. The computed results for both coefficients lie somewhat above the
range data. At Mach 5.25, the range values of the roll producing moment coefficient are
4 to 35 percent below the computed result, while the range values of the roll damping
moment coeflicient are 10 to 38 percent below the computed value. The result that both
coefficients show similar comparisons between range and computed values is a reflection
of the fact that the steady-state spin rate is approximately the ratio of the roll producing
moment coefficient to the roll damping moment coefficient. As was shown in Figure 20,
this ratio is accurately predicted.

It has been noted by other investigators® that some of the round-to-round variability
in the spin history of the projectile can be traced to variability in the fin geometry (par-
ticularly the beveled surfaces) which occur during manufacturing. These variations should
primarily impact the roll producing moment coefficient. However, this does not appear
to be a significant factor in the range results examined in this report, because similar
variations are seen in both the roll producing and roll damping moment coefficients.

Some of the variability in the range values of roll producing and roll damping moment
coefficient can be traced to the measurement of the spin rate at the two measurement
stations. For example, it can be shown that a +10 percent variation in the roll rate at
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the first measurement location will result in about a +20 percent variation in the roll
producing or roll damping moment coefficients. Improvements in the determination of the
roll coefficients can be made by increasing the number of measurement stations.

VII. CONCLUSION

The roll characteristics of the M829 kinetic energy projectile have been determined
using a recently developed Computational Fluid Dynamics (CFD) approach. The com-
puted roll characteristics, as well as predicted spin histories, have been compared with
results obtained using engineering estimation approaches and with data obtained from
range firings.

The computed steady-state roll rate and the spin histories agree well with the values
obtained from range firings. The predicted roll producing moment and roll damping mo-
ment coefficients lie somewhat above most of the range data, though the range data does
show considerable scatter. Further validation of the computed roll moment coefficients is
desirable. However, this will require improving the determination of these coefficients from
the range firings, perhaps by using additional measurement stations.

Equilibrium spin rate predictions made with an engineering estimation approach are
within fifteen percent of the computational predictions. The engineering estimates of the
roll producing and roll damping moment coefficients showed substantial over-predictions
compared with the computational results, though the results near the launch Mach number
were within 25 percent.
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Table 1. Range Measurements of Roll Trajectories

Round | Mach | Spin Rate | Spin Rate | Steady Roll Roll
Number | Number | 71 Meters | 256 Meters | State | Producing | Damping
from the | from the Roll Moment Moment
Gun Gun Rate | Coefficient | Coefficient
(pD/V) | (pD/V) |(pD/V)
23439 5.27 0.00511 0.00802 | 0.00827 | 0.0893 10.86
23440 5.25 0.00639 0.01034 | 0.01075 0.1089 10.19
23441 5.26 0.00525 0.00918 | 0.00978 | 0.0845 8.70
23442 4.64 0.00558 0.00813 | 0.00828 | 0.1041 12.65
23443 4.64 0.00496 0.00825 | 0.00865 | 0.0827 9.63
23551 3.98 0.00620 0.00953 | 0.00979 0.1102 11.34
23562 4.02 0.00658 0.01150 | 0.01226 | 0.1060 8.73
23563 3.50 0.00581 0.00999 | 0.01059 | 0.0946 9.02
23564 3.53 0.00744 0.00972 | 0.00978 | 0.1569 16.14
23575 3.57 0.00504 0.00914 | 0.00989 | 0.0790 8.07
23576 4.67 0.00558 0.00872 | 0.00898 | 0.0978 10.96

12




(Ww GO'Le =

e o5 e—— o'g ———>* 107 ¥

H391TvO 3INO) SHIAGITVO NI SNOISNINWIA 11V

—

l0°€E

v

1 00 960

o—

;\

=

i550)

e

8660 0l
A
y

906Gl

>

— £8'Z1

>e—06'c —>

[AR YA

Figure 1. Schematic of M829 projectile
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Figure 2. Schematic of M829 fin
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Figure 5. Cross-sectional view of fin showing cant angle
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Figure 6. Development of roll producing moment coefficient over fins, Mach = 4
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Figure 7. Pressure distribution on fin at mid-span, Mach 4
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Figure 8. Variation of computed roll producing moment coefficient with Mach number
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Figure 11. Variation of computed roll damping moment coefficient with Mach number
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Figure 12. Variation of computed equilibrium spin rate with Mach number
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Figure 13. Variation of engineering and computed predictions of roll producing moment
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Figure 14. Variation of engineering and computed predictions of roll damping moment
coefficient with Mach number
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Figure 17. Comparison computed roll history with range data - Launch Mach number =
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Figure 18. Comparison computed roll history with range data - Launch Mach number =
4.65

22




0.0125

0.0100

0.0075

PD/V

0.0050

0.0025

COMPUTATION
0O O & RANGE DATA

0.0000

I | T |

T T
0.0 0.1 02 0.3 04 05 0.6

RANGE - KM

Figure 19. Comparison computed roll history with range data - Launch Mach number =

5.25
0.015 -
[ ]
[ ]
0.010 - e .
> N
~.
()
o
0005 o PNS
e RANGE FITS
0.000 , , _ ,
2 3 4 5 6

MACH NUMBER
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Figure 21. Comparison of computed Mach number variation of roll producing moment

coeflicient with range data

-20
@
o 6/6\\
o
C|p 14 ° ®
-10 o °® 1
@ @
®
-b o PNS
® RANGE FITS
0 | | | |
2 3 4 5 6

MACH NUMBER
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Greek Symbols

LIST OF SYMBOLS

freestream speed of sound

local chord length of fin

drag coefficient

roll moment coefficient

roll producing moment coefficient

roll damping moment coefficient

projectile diameter

total energy per unit volume, normalized by p.a
flux vectors in transformed coordinates

2
00

source term resulting from rotating coordinate frame

inviscid source term resulting from the cylindrical coordinate formulation
moment of inertia

Jacobian

characteristic length, typically projectile diameter, D

projectile mass

freestream Mach number

number of fins

pressure, as used in thin-layer Navier-Stokes equations, normalized by po.a?,
spin rate, as used in the roll equations and aerodynamic coefficients
nondimensional spin rate

freestream static pressure

Reynolds number, aopo0 L/ floo

radial coordinate, normalized by L

distance downrange

viscous flux vector in transformed coordinates

viscous source term resulting from cylindrical coordinate formulation
reference cross sectinnal area of projectile, 7D?/4

time

axial, tangential, and normal velocity components of the
Navier-Stokes equations, normalized by a,

Contravariant velocities of the transformed Navier-Stokes equations
freestream velocity used to non-dimensionalize the spin rate and

the aerodynamic coefficients

axial coordinate, normalized by L

~
6(r)

I

It

fhoo
¢
p

Poo
Q

ratio of specific heats

local cant angle of fin

molecular viscosity, normalized by po

turbulent viscosity, normalized by .,

molecular viscosity evaluated at the freestream static temperature
transformed coordinates

density, normalized by po,

freestream density

spin rate of rotating coordinate frame, normalized by a /L
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